The dome of the Radcliffe Camera against a blue sky
The Radcliffe Camera
(Image Credit: Liam Peck / Graduate Photography Competition)

Statistics and Machine Learning (EPSRC CDT)

About the course

The Statistics and Machine Learning (StatML) Centre for Doctoral Training (CDT) is a four-year DPhil research course (or eight years if studying part-time). It will train the next generation of researchers in statistics and machine learning, who will develop widely-applicable novel methodology and theory and create application-specific methods, leading to breakthroughs in real-world problems in government, medicine, industry and science. 

This is the Oxford component of the StatML CDT, co-hosted by Imperial College London and the University of Oxford. The course will provide you with training in both cutting-edge research methodologies and the development of business and transferable skills – essential elements required by employers in industry and business.

You will undertake a significant, challenging and original research project, leading to the award of a DPhil. Given the breadth and depth of the research teams at Imperial College and the University of Oxford, the proposed projects will range from theoretical to computational and applied aspects of statistics and machine learning, with a large number of projects involving strong methodological/theoretical developments together with challenging real-world problems. A significant number of projects will be co-supervised with industry.

You will pursue two mini-projects during your first year (specific timings may vary for part-time students), with the expectation that one of them will lead to your main research project. At the admissions stage you will choose a mini-project. These mini-projects are proposed by the department's supervisory pool and industrial partners. You will be based at the home institution of your main supervisor of the first mini-project.

If your studentship is funded or co-funded by an external partner, the second mini-project will be with the same external partner but will explore a different question.

Alongside your research projects you will engage with taught courses each lasting for two weeks. Core topics will be taught at the beginning of your first year (specific timings may vary for part-time students) and are:

  • Modern Statistical Theory
  • Statistical Machine Learning;
  • Causality; and
  • Bayesian methods and computation.

You will then begin your main DPhil project at the beginning of the third term (at the beginning of the fourth term for part-time students), which can be based on one of the two mini-projects. Where appropriate for the research, your project will be run jointly with the CDT's leading industrial partners, and you will have the chance to undertake a placement in data-intensive statistics with some of the strongest statistics groups in the USA, Europe and Asia.

If you are studying full-time, starting in the second year, you will teach approximately twelve contact hours per year in undergraduate and graduate courses in your host department. If you are studying part-time, teaching will begin in the third year and you will teach approximately six hours per year. This is mentored teaching, beginning with simple marking, to reach a point where individual students are leading whole classes of ten or twelve undergraduate students. Students will have the support of a mentor and get written feedback at the end of each block of teaching.

You will also be required to take a number of optional courses throughout the four years of the course, which could be made up of choices from the following list:

  • Bayesian nonparametrics;
  • high-dimensional statistics;
  • advanced optimisation;
  • networks;
  • reinforcement learning;
  • large language models;
  • conformal inference, variational Bayes and advance Bayesian computations, dynamical and graphical modelling of multivariate time series, modelling events; and
  • deep learning.

Optional modules last two weeks and are delivered in a similar format to the core modules.

Many events bring StatML students and staff together across different peer groups and research groups, ranging from full cohort days and group research skills sessions to summer schools. These events support research and involve staff and students from both Oxford and Imperial coming together at both locations.

The Department of Statistics runs a seminar series in statistics and probability, and a graduate lecture series involving snapshots of the research interests of the department. Several journal-clubs run each term, reading and discussing new research papers as they emerge. These events bring research students together with academic and other research staff in the department to hear about on-going research, and provide an opportunity for networking and socialising.

Attendance

The course can be studied full-time or part-time with both modes requiring attendance in Oxford. Full-time students are subject to the University's Residence requirements. Part-time students are required to attend course-related activities in Oxford for a minimum of 30 days each year.

The full-time course is usually studied over three to four years. The part-time course is usually studied over six to eight years.

The course will involve attending modules and other cohort activities. You may be required to attend some activities in London.

There will be no flexibility in the dates of modules or cohort events, though it is possible to spread your attendance at modules over the four year course (with agreement of your supervisor and the course directors). Attendance will be required during term-time (on a pro-rata basis) for cohort activities. These often take place on Mondays and Thursdays. Attendance will occasionally be required outside of term-time for cohort activities. 

Cohort-building is a core element of StatML. As a result, the course requires you to attend the various academic training and cohort-based/cross-cohort activities in-person. You are strongly encouraged to attend all training and engage with all cross-cohort activities organised by Oxford and Imperial over the course of your DPhil. If needed, the course will support any student who needs to be accommodated.

You will have the opportunity to tailor your part-time study and skills training in liaison with your supervisor and course directors and agree your pattern of attendance.

Provision exists for students on some courses to undertake their research in a ‘well-founded laboratory’ outside of the University. This may require travel to and attendance at a site that is not located in Oxford. Where known, existing collaborations will be outlined on this page. Please read the course information carefully, including the additional information about course fees and costs.

Resources to support your study

As a graduate student, you will have access to the University's wide range of world-class resources including libraries, museums, galleries, digital resources and IT services.

The Bodleian Libraries is the largest library system in the UK. It includes the main Bodleian Library and libraries across Oxford, including major research libraries and faculty, department and institute libraries. Together, the Libraries hold more than 13 million printed items, provide access to e-journals, and contain outstanding special collections including rare books and manuscripts, classical papyri, maps, music, art and printed ephemera.

The University's IT Services is available to all students to support with core university IT systems and tools, as well as many other services and facilities. IT Services also offers a range of IT learning courses for students, to support with learning and research.

The department has spaces for study and collaborative learning, including the library and large interaction and social area on the ground floor, as well as an open research zone on the second floor.

You will be provided with a computer and desk space in a shared office. You will have access to the department of Statistics computing facilities and support, the department’s library, the Radcliffe Science Library and other University libraries, centrally-provided electronic resources and other facilities appropriate to your research topic. The provision of other resources specific to your DPhil project should be agreed with your supervisor as a part of the planning stages of the agreed project.

Facilities for refreshment are provided in the department. There are also opportunities for sporting interaction such as football and cricket.

Supervision

The allocation of graduate supervision for this course is the responsibility of the Department of Statistics (Oxford) and/or the Department of Mathematics (Imperial). It is not always possible to accommodate the preferences of incoming graduate students to work with a particular member of staff. A supervisor may be found outside these departments.

You are matched to your supervisor for the first mini-project at the start of the course. Within the first year of the course, the student will have the opportunity to work with an alternative supervisor for a second mini-project. It is normal for one of these mini-projects to lead to the full DPhil project with the same supervisory team as was in place for the mini-project chosen. 

Typically, as a research student, you should expect to have meetings with your supervisor or a member of the supervisory team with a frequency of at least once every two weeks averaged across the year. The regularity of these meetings may be subject to variations according to the time of the year, and the stage that you are at in your research programme.

Assessment

Each mini-project will be assessed on the basis of a report written by the student, by researchers from Imperial and Oxford.

Modules are assessed by a presentation in small groups on some material studied during the two-week module (known as micro-projects within the programme).

All students will be initially admitted to the status of Probationer Research Student (PRS). Within a maximum of six terms as a full-time PRS student or twelve terms as a part-time PRS student, you will be expected to apply for transfer of status from Probationer Research Student to DPhil status. This application is normally made by the fourth term for full-time students and by the eighth term for part-time students.

A successful transfer of status from PRS to DPhil status will require the submission of a thesis outline. Students who are successful at transfer will also be expected to apply for and gain confirmation of DPhil status to show that your work continues to be on track. This will need to done within nine terms of admission for full-time students and eighteen terms of admission for part-time students.

Both milestones normally involve an interview with two assessors (other than your supervisor) and therefore provide important experience for the final oral examination.

Full-time students will be expected to submit a thesis at four years from the date of admission. If you are studying part-time, you be required to submit your thesis after six or, at most, eight years from the date of admission. To be successfully awarded a DPhil in Statistics you will need to defend your thesis orally (viva voce) in front of two appointed examiners.

The final thesis is normally submitted for examination during the fourth year (or eighth year if studying part-time) and is followed by the viva examination. The final award for Oxford-based students will be a DPhil awarded by the University of Oxford.

Graduate destinations

StatML is dedicated to providing the organisation, environment and personnel needed to develop the future industrial and academic individuals doing world-leading research in statistics for modern day science, engineering and commerce, all exemplified by ‘big data’.

Changes to this course and your supervision

The University will seek to deliver this course in accordance with the description set out in this course page. However, there may be situations in which it is desirable or necessary for the University to make changes in course provision, either before or after registration. The safety of students, staff and visitors is paramount and major changes to delivery or services may have to be made if a pandemic, epidemic or local health emergency occurs. In addition, in certain circumstances, for example due to visa difficulties or because the health needs of students cannot be met, it may be necessary to make adjustments to course requirements for international study.

Where possible your academic supervisor will not change for the duration of your course. However, it may be necessary to assign a new academic supervisor during the course of study or before registration for reasons which might include illness, sabbatical leave, parental leave or change in employment.

For further information please see our page on changes to courses and the provisions of the student contract regarding changes to courses.

Was this page useful?*