EXAMPLE SOLUTIONS TO SAMPLE PAT PAPER

Q1:
$$\frac{63}{15625}$$
 from $(2^n - 1)/5^n$
Q2: $y = \int \left(x^2 + \frac{1}{x^3}\right) dx = \frac{x^3}{3} - \frac{1}{2x^2} + D$. As $y(1) = 0$, we get that $D = 1/6$. Therefore
 $\int_1^3 y \, dx = \int_1^3 \left(\frac{x^3}{3} - \frac{1}{2x^2} + \frac{1}{6}\right) dx = \left[\frac{x^4}{12} + \frac{1}{2x} + \frac{x}{6}\right]_1^3 = \frac{20}{3}$

Q3: 10

Q4: y/4

 ${\bf Q5}:$ The following statements are true:

- ${}^{15}_{7}$ N has a larger mass than ${}^{14}_{7}$ N.
- ${}^{16}_{8}$ O has a larger nuclear charge than ${}^{15}_{7}$ N.
- ${}^{18}_{8}$ O has a larger mass per unit charge than ${}^{12}_{6}$ C.

Q6: 5 seeds

- **Q7**: 10^4 Hz
- **Q8**: -2f(x-1)

Q9: $16 + 12x + 3x^2 + \frac{x^3}{4}$

Q10: 1.2 m s^{-1}

Q11: a, c. It can be found that b, d is also correct but this is not an option.

Q12: 2*F*. Since $\frac{1}{2}mv^2 = Fd$ to stop it, and we need $F^{\text{circle}} = \frac{mv^2}{d}$, we find that F' = 2F.

Q13: $P = I_D V_D$ and $NI_D = 20 NI_S$. Putting numbers in we get $I_S = 2.5A$.

Q14: Reflection in y = 0. Note that answer C produces a triangle in the desired position but has points B and C swapped and is thus incorrect.

Q15: The answer is D because it is placed in the branch with the lowest total resistance of 4/3R.

Q16: $x = \frac{1}{2}$. Whilst x = -2 is a solution to the quadratic form that arises after exponentiating the equation $(2x^2 + 3x - 2 = 0)$ it is not a valid argument for the \log_2 function.

Q17: $R/\sqrt{5}$. The field strength is proportional to $1/r^2$ so that $g_E = k/R_E^2$ and $g_R = k/R^2$ with the same value of k.

Q18: There are 3 such maxima. $sin(\alpha)$ has maxima for $\alpha \in (90, 450, 810, 1170, ...)$. The first three are accessible for x > 0.1 so the answer is **C**

Q19: Ordered in increasing wavelength:

- (1) radioactive source (gamma rays)
- (2) electric torch (white light)
- (3) hot cooking stove (infrared)
- (4) microwave oven (microwaves)
- (5) short-wave radio transmitter (radio)

Q20: The different possible decay final states of two X particles which are compatible with the observation of at least one pair of Y particles are: (YY, YY), (YY, ZZ), (ZZ, YY) each of which has equal probability of 1/3. In two of these outcomes a pair of Z particles is present so the answer is P = 2/3.

Q21: We need a total of 4 * 3 + 4 * 2 + 2 * 1 = 22 practicals which can be arranged in 4 sessions as follows:

Session 1: 4 students needing three practical + 2 students needing 2 practical Session 2: 4 students needing three practical + 2 students needing 2 practical Session 3: 4 students needing three practical + 2 students needing 1 practical Session 4: 4 students needing 2 practical

Q22: The sequence is one of prime numbers and the next prime is 61

Q23: Atoms have typical dimensions $R_{\text{atom}} \approx 10^{-10} \text{ m}$ and hence volume $V_{\text{atom}} = 10^{-30} \text{ m}^3$. The dimension of our stone is $L_0 = 10^{-1} \text{ m}$ and hence $V_{\text{stone}} = 10^{-3} \text{ m}^3$. After the nth hit the dimension of the stone is $V_n = \frac{10^{-3}}{3^n}$ so we demand $\frac{10^{-3}}{3^n} \leq 10^{-30}$ which leads to $n \leq \log_3(10^{30-3}) = \frac{\ln(10^{27})}{\ln(3)} \approx 56.6$.

Q24: Answer is E. The negative sign in front of f mirrors the function along the x-axis. Inverting just the sign of x in the argument shifts the peak to be at -b. Adding a to the argument shifts the graph to the right by less than b so it now peaks at (a - b).

Q25: The next number is 4. Each number is equal to its precursor divided by -3.

Q26: After exponentiating $xy^2 = 32$ and $\frac{x}{y} = \frac{1}{2}$. Insert x = y/2 from the second equation into the first gives $y^3 = 64$ which yields y = 4. Inserting this back into the first equation gives x=2.

Q27: Gravitational potential energy is proportional to r^{-1} and hence n = -1 The total Energy is the sum of potential and kinetic energy

$$\langle E_{\rm tot} \rangle = \langle V_{\rm tot} \rangle + \langle T_{\rm tot} \rangle = \langle V_{\rm tot} \rangle - \frac{1}{2} \langle V_{\rm tot} \rangle = \frac{1}{2} \langle V_{\rm tot} \rangle$$

Q28: $\frac{g_{\text{planet}}}{g_{\text{Earth}}} = 2.$

Q29: $\alpha \leq -2$ or $\alpha \geq 2$. Using trig relations the equation can be rephrased as $\tan^2 \theta + \alpha \tan \theta + 1 = 0$. This is a quadratic in $\tan \theta$ with the solution: $\tan \theta = \frac{-\alpha \pm \sqrt{\alpha^2 - 4}}{2}$ which requires $\alpha^2 \geq 4$.

Q30: $\left(\frac{2br}{(b+r)(b+r-1)}\right)$ — the sum of the probabilities for the two possible positive outcomes which are br and rb.

Q31: $N_{\text{max}} = 2^{10} = 1024$ since we can use our fingers to indicate the digits of a 10 digit binary number.

Q32: $I_2 = -I$. The *B* field changes its direction when the current changes its direction. Both wires will contribute the same field at the middle line and hence $I_2 = -I$.

Q33: New moon.

Q34: (1) only B closed (2) only A closed (3) both closed.

Q35: $L = \frac{v}{4f_{\min}}$. The standing wave in the pipe has to have a node at the closed end and a maximum at the open end with no other nodes between. This means that the length of the pipe $L = \lambda_{\max}/4$ and $L = v/(4f_{\min})$.

Q36: $\rm C\,m\,s^{-1}$. In SI base units (m, s, mol, A, K, cd, Kg) all other combinations give $\rm Kg\,m\,s^{-2}$ = $\rm N$

Q37: Twice right and once left. P = 12/27 = 4/9.

Q38: This is the sum of a geometric progression to infinity with an unknown ratio α . We want the sum $S = \frac{1}{1-\alpha} \leq 3$ therefore $\alpha \leq \frac{2}{3}$

Q39: The area of the roof is $A = 100 \cdot 50 \text{ m}^2 = 5000 \text{ m}^2$. The total mass is $m = 5000 \times 100 \text{ kg}$ so the weight is $F = mg = 9.81 \cdot 5 \cdot 10^5 \text{ N} = 4.9 \cdot 10^6 \text{ N}$.

Q40: $y = -\frac{1}{2}x + \frac{1}{2}$. The line needs to have a gradient of $\frac{-1}{a}$ where *a* is the gradient of the line it intersects perpendicularly. It also needs to go through the point (x = 1, y = 0)